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Unstable waves on an axisymmetric jet column 

By G. E. MATTINGLY AND C. C. CHANG 
Department of Civil and Geological Engineering, Princeton University 

(Received 14 May 1973 and in revised form 13 November 1973) 

The growth of infinitesimal disturbances on an axisymmetric jet column is 
investigated theoretically and experimentally. The theoretical analysis is based 
upon inviscid stability theory, wherein axisymmetric, helical and double helical 
disturbances are considered from the spatial reference frame. In  the jet flow field 
near the source, the mean velocity profile is observed to have a potential core 
and a thin, but finite, shear layer between the potential core and the quiescent 
ambient fluid. With downstream distance, the potential core diameter decreases 
and the shear-layer thickness increases. To incorporate these variations into the 
theory, a quasi-uniform assumption is adopted, whereby successive velocity 
profiles are analysed individually throughout the region in the jet flow where 
disturbances are observed to be small. The results of the theory indicate that 
initially, in the jet flow where the shear layer is thin and the potential core is 
larger, all disturbances considered are unstable. The dominant disturbance in 
the jet is an axisymmetric one. However, further downstream in the jet, where 
the half-breadth thickness of the shear layer is 55 % of the potential core radius, 
a helical disturbance is found to dominate the axisymmetric and double helical 
modes. Nowhere in the jet flow field examined was the double helical disturb- 
ance found to be dominant. The cross-stream distributions of velocity and 
vorticity €or the dominant disturbance modes are presented according t o  the 
spatial stability theory. 

The downstream development of the jet column and the characteristics of the 
disturbances amplifying on i t  were also studied in a water tank. No artificial 
stimulation of any particular disturbance was used. The experimental results 
show good agreement with the results of the theory in the region where the 
disturbances are small. However, conclusive confirmation of the switch in the 
hierarchy of dominant disturbances was not found. Half of the time the distur- 
bance observed experimentally exhibits an axisymmetric character and the other 
half a helical one. This apparently is due to the similar spatial amplification rates 
experienced by both of these disturbance modes. It is concluded that this 
switching of dominant modes is, in large part, responsible for (i) the well- 
known natural drifting of disturbance characteristics in jet flows, and (ii) the 
wide variety of observations made in previous jet experiments. 
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1. Introduction 
It has been known for well over one hundred years that the laminar, axisym- 

metric jet is unstable a t  high Reynolds number, and that the shear layers are 
rolled up into vortices before turbulence is observed. Batchelor & Gill (1962) 
attempted to predict theoretically, via linearized stability theory, the disturbance 
characteristics observed in the axisymmetric jet experiment conducted by 
Reynolds (1962). Their analysis considered the stability of three different types 
of disturbances in the jet flow. The first was an axisymmetric (or varicose) 
disturbance, the second a helical and the third a double helical disturbance. Their 
results pertained to (i) the so-called ‘ top-hat ’ jet comprised of a potential core 
inside an infinitesimally thin shear layer, and (ii) a ‘far-downstream’ profile 
which has no potential core and a shear layer of finite thickness. For the ‘top- 
hat’ jet, they found that all three types of disturbances satisfy their necessary 
condition for instability. For the far-downstream profile, only sinuous or helical 
modes were found to be amplified. The particularly disturbing feature of the 
Batchelor & Gill theory was that it did not conclusively predict the experimental 
observations, namely the ‘puffs ’ and ‘condensations’ (or axisymmetric distur- 
bances) observed in a jet. Later, Gill (1962) incorporated viscous effects in an 
attempt to predict theoretically that axisymmetric disturbances are the most 
highly amplified in the jet flow. However, this effort also proved unsuccessful, 
with the conclusion drawn that perhaps small but finite disturbances of the 
axisymmetric variety would have to be considered if the theory were to predict 
the experimental observations. 

In  the dye study conducted by Reynolds, a variety of observations of jet 
breakup were noted through his Reynolds number range of 10 to 300+, with his 
particular background conditions. With increasing flow rate, the jet was observed 
t o  have (i) tiny puffs of dye near the nozzle producing the jet, (ii) axisymmetric 
condensations away from the nozzle, (iii) sinuous undulations of long wavelength 
farther from the nozzle and finally foot-shaped dye pockets and then confused 
breakup. It should be noted that Reynolds did not use artificial stimulation to 
excite any particular disturbance. The present results extend the attempts of 
Batchelor & Gill, and Gill to explain these observations using stability theory. 

When stability analyses are performed from the temporal viewpoint, the 
disturbances considered are permitted to oscillate both with distance in the 
stream direction and in time, and are unstable in the sense that they grow in an 
exponential envelope in time. Spatial stability, on the other hand, entertains 
disturbances which also oscillate in time and space, but either dampen or amplify 
exponentially in space. This latter type of stability analysis conformsimmediately 
with what is observed experimentally (see Freymuth 1966). Of course, a Galilean 
transformation exists which connects the results of these two types of analyses. 
Gaster (1968) showed that the group velocity is the appropriate velocity for this 
transformation when the amplification rates are small. However, in the cases of 
highly unstable free shear layers, the proper velocity is difficult to obtain as it 
requires excessive computer time (see Mattingly & Criminale 1972). 

The latter concluded, in fact, that the stability analysis should be performed 
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solely from the spatial viewpoint, as a result of the improved agreement they 
achieved with experimental values in their naturally amplifying wake flow. The 
present results indicate that, when the mean profile is properly described with a 
potential core and a thin but finite shear-layer region separating the core from the 
stationary, ambient fluid, agreement between the spatial theory and experimental 
observations is to be considered very good. In view of this, it  is again concluded 
that stability analyses should be performed solely from the spatial viewpoint. 

The present results contradict those of Crow & Champagne (1971), who con- 
cluded, from the disagreement between their phase velocity measurements and 
the predictions from their spatial theory applied to the ' top-hat ' jet, that these 
analyses are to be done temporally. In  addition, they bolstered this conclusion by 
suggesting that the spatial stability theory is mathematically inconsistent with 
downstream boundary conditions. The present authors feel that the choice of the 
' top-hat ' jet profile is both an unnecessary simplification of the actual distribu- 
tion, and the cause of the phase velocity disagreement found by Crow & 
Champagne. Furthermore, they interpret the downstream boundary conditions 
in the spatial stability problem as the limit of linearity, thereby avoiding any 
mathematical inconsistency. 

The present study includes a presentation of the cross-stream, as well as down- 
stream, distributions of the disturbance velocity and vorticity. The authors feel 
that, with a thorough understanding of the dynamics of small disturbances in 
unstable fluid flows, there can be a continuous progression to the nonlinear 
analyses conducted downstream or to the initial conditions for numerical compu- 
tations of such complex flows. 

2. Experiment 2.1. Description of facility 

The experiment was conducted in the John E. Nicholson Tilting Flume Facility 
of the Lewis 3'. Moody Hydrodynamics Laboratory at  Princeton University. 
Mattingly (1968) describes this facility. A partition was installed across the (16 in. 
deep by 30in. wide) flow section, and, with a suitable fairing surface, the 1 in. 
diameter, axisymmetric jet flow field was produced in the water a t  the centre of 
this partition. Visual observations of the flow field were made using the hydrogen- 
bubble flow visualization technique (see Mattingly 1966) ; detailed surveys were 
made using DISA dual-channel anemometry. Sensors used were DISA quartz- 
coated fibres; these were traversed with accuracies of 0.001 and 0.002 in. in the 
radial and longitudinal directions, respectively. The jet flow field, as seen using 
the hydrogen-bubble technique, is shown in figure 1 (plate 1). To achieve low 
values of turbulence intensity at  the nozzle exit, the centre-line velocity was 
less than 0.5 in. s-1, giving a diametral Reynolds number of 300, which is con- 
sidered sufficiently large to correspond to the inviscid theory. 

2.2. Survey of the jet $ow field 

The general aspects of the amplitudes and frequencies of the longitudinal distur- 
bance velocity pz are shown in the fluctuation map, figure 2. Traced oscillographic 
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FIGURE 2.  Fluctuation map. fl, region where disturbed amplitudes equal or exceed 1 % 
of the centre-line velocity; @, region where disturbances equal or exceed 4 % of the centre- 
line velocity. Grid marks on each oscillograph denote: vertically 1 yo of centre-line velocity, 
horizontally 0.1 s .  

records of anemometer response are presented to indicate that, within the first 
two diameters of the jet flow field, the periodic disturbance level is less than 
2.3 yo of the jet’s potential core velocity. It is assumed that this small amplitude 
justifies the use of the linearized stability theory in this region. 

In  the present investigation, considerable care was taken to avoid spurious 
vibrations in the jet profile. A turbulence level of 0.1 yo existed at  the nozzle exit, 
and no artifical excitation was used in any way to stabilize the natural jet 
frequency. 

The results of the mean profile measurements are presented in figure 3. To 
facilitate computer calculation of the eigenvalues, these profiles were smoothed, 
so that both the potential core and the important shear layer at  the edge of the 
jet were properly included. Consequently, two parameters are required for each 
profile: one for the radius of the potential core, the other to specify the shear-layer 
structure using a one-sided Gaussian distribution, i.e. 

U(R) = 1.0 (0  6 R 6 A ) ,  U(R) = exp{-@-A)2) (R 2 A) .  (3.2.1) 

The values for the potential core radiusA are presentedin table 1.  The co-ordinates 
(R, 2) and radius A are non-dimensionalized, using the local half-breadth thick- 
ness of the jet’s shear layer, a procedure which produced cr = 0.693, a constant. 
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FIGURE 3. (a) Mean velocity profile measurements. ( b )  Mean velocity profiles smoothed 
with potential core and Gaussian shear-layer distributions. z/d,: v,  0.125; A, 0.5; a, 1.0; 
X ,  1.5; @, 2.0. 
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A survey of the mean jet flow region studied confirmed that it is axisymmetric 
and approximately parallel throughout the first few diameters in the stream 
direction. 

3. Theory 3.1. Development of equations 

The initial stages of growth for spatially growing waves in an axisymmetric jet 
are described using the linearized stability theory. Consider in cylindrical co- 
ordinates (R, $,Z)  a steady axisymmetric jet flow field, having velocity U ( R )  
parallel to the axis of symmetry R = 0, and pressure distribution P ( 2 )  in the 
axial direction. Upon this mean profile we superpose the perturbation velocity 
and pressure fields. 

Non-dimensionalization is achieved using the jet centre-line velocity and the 
half-breadth thickness of the shear-layer region of the jet velocity profile. The 
composite motion is, non-dimensionally, 

(3.1.1) I 
i 

%(& $ 5  2, T )  = U(R) + 
QR, $4 z, T) = ?(& $, z, T), 
Jp, $, z, T) = q R ,  4, 8, TI, 
P(R, #, 2, T )  = P ( Z )  + P @ ,  $, 2, TI, 

$ 7  2, T ) ,  

where t,ilcles denote disturbance quantities that  are further decomposed (in the 
notation of Batchelor & Gill 1962) as 

(3.1.2) 
q ( E ,  #, 2 , T )  = Re { X ( R )  exp [iaZ -iwT + in$]), 

&(R, $, 2, T) = Re {F(R)  exp [iaZ - iwT +in$]), 

pR(R, $, 2, T )  = Re {ig(R) exp [iaZ - iwT + in$]}, 

p(R,$ ,Z ,T)  = Re{B(R)exp[iaZ-iwT+in#]),  

where a = 2n/h is the wavenumber, h being the wavelength in the stream 
direction, w is the angular frequency, n is the integral mode number and 9,2P,F 
and B are complex functions of the radial co-ordinate only. According to the 
spatial theory, CL is a complex number, the imaginary part of which indicates 
growth or decay with the axial co-ordinate. The angular frequency w is con- 
strained to be only real. Using this constraint, we examine only the spatial growth 
of the initially infinitesimal disturbances. 

The following analysis will be carried out inviscidly, since the instability 
observed in such two-dimensional mean flows as jets, wakes and shear layers is a 
dynamic instability. I n  these flows, viscosity has only a stabilizing effect, as 
noted from the characteristics of the corresponding neutral curve. Here, a similar 
assumption is made for the axisymmetric jet. 

Substitution of the above quantities into the incompressible continuity and 
inviscid momentum equations, where mean flow quantities are appropriately 
extracted, and P ( R ) ,  F ( R )  and @(R) are eliminated, gives the governing equa- 
tion (see Batchelor & Gill) 

f R  [n2 EzRz 91 - ( U  - c )  3 - RY - ( d R  nZ+uzR2 
= 0, (3.1.3) ( U - G ) -  
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where primes denote differentiation with respect to R, and c is the complex phase 
velocity where w = ac. The boundary conditions are 

3( -tm) = 3‘( +m) = (0, O ) ,  (3.1.4) 

where the ordered pairs refer to the real and imaginary parts of the complex 
functions. Kinematically, near the axis of symmetry we find (see Batchelor & 
Gill) 

3(R) r R+&a2R3 (n = 0 ) ,  3(R) g Rn-l (n =+ 0) .  (3.1.5), (3.1.6) 

Beyond the edge of the axisymmetric mean profile, the solutions outside the jet 
have the form 

3(R) = Cl,(aR) +DK,(aR), (3.1.7) 

where I ,  and K, are modified Bessel functions of the first and second kind, 
respectively. Invoking the infinity boundary conditions, we find in this region 

exp { - aR} 
( 2 / n ~ R ) ~  ’ 

exp { - aR} 
( ~ / ~ L x R ) ~  . (3.1.8) Y(R) r - [*R + a] 9(R) z K,(aR) N 

The three eigenvalue problems posed here (viz. for = 0, n = 1 and n = 2 )  will 
be solved numerically in subsequent sections. Our goal is to select the most highly 
amplified eigenmode. The eigenvalue problems thus formed require but the input 
of a particular jet mean velocity profile for the determination of the respective 
dispersion relation. As the mean velocity profile of the jet flow continuously 
changes in the flow direction, the question arises as to which profile should be 
used. Since the jet profile changes slowly with downstream direction, we adopt 
the quasi-uniform assumption. 

3.2. Quasi-uniform assumption 

The velocity measurements presented in figure 3 reveal that  the axisymmetric jet 
velocity profiles to be studied are suitably smoothed by the curves shown. These 
curves are flat, having a potential core in the centre portion of the jet flow and 
edges that closely approximate Gaussian functions. With downstream direction, 
both the potential core region and the Gaussian shear-layer distributions are 
altered so as to fit the measured profile. The numerical results for these alterations 
are presented in figure 3. 

Given these values for the smoothing curves, the quasi-uniform assumption is 
now adopted in the near field of the jet flow, where disturbance amplitudes are 
small. At each stream location where a top-hat, Gaussian-edged profile is selected, 
the eigenvalue computation is then performed. While this procedure is unreal in 
the sense that streamwise derivatives of the mean velocity are neglected a priori, 
the collective results for the successive profiles are considered to predict the 
trends of longitudinal variations in the different mean profiles. Certainly this 
procedure is an improvement on the usual practice of selecting a single velocity 
profile somewhere in the flow being examined, computing eigenvalues and some- 
times eigenfunctions, then comparing these with measurements made throughout 
the small disturbance region. 

35-2 
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3.3. Computational procedure 

Adopting the quasi-uniform assumption and choosing a particular mean jet 
profile, a Runge-Kutta integration with an initially guessed pair ( a , w )  was 
performed betweon appropriate centre-line conditions and the modified Bessel 
conditions that exist beyond the jet edge. When the integration results differed 
from the modified Bessel conditions a t  the edge of the jet, a Newton-Raphson 
scheme altered the guess for (a, w )  and the process was repeated until a match 
occurred. The values for the pair (a,  w )  that  produced the match were then taken 
as an eigenvalue pair. This calculation is next done for each of the three centre- 
line conditions, and for each of five mean profiles beginning near the jet source 
and extending through five diameters downstream. 

The integration procedure was followed using various grid sizes and matching 
tolerances, until it was found that reducing each of these by a factor of ten 
changes only the fourth decimal place in a with a fixed w .  The values finally used 
for grid size and matching tolerance for ordinate and slope a t  the jet edge were 
0.01 and 0.001, respectively. 

For the sake of brevity, only the eigenvalue results for a single jet profile will be 
presented. Here, these results for the characteristics of the various disturbances 
as well as for the eigenfunctions of velocity and vorticity will be of particular 
interest, especially for the disturbance which is the most highly amplified a t  each 
jet position. According to the linear theory, it is expected that these disturbance 
characteristics and their eigenfunctions should be observed in the corresponding 
experimental study. 

3.4. Eigenfunctions 

The solutions to the governing equation are obtained numerically. With specific 
eigenvalues (viz. those for the most highly amplified disturbances), the eigen- 
functions are computed as follows. Taking g ( R )  as an example, the actual 
disturbance has amplitude IF1 and phase B,(R), where 

g ( R )  = IF(R)I exp{iB,}. (3.4.1) 
Therefore, 

%(I?, $, 2, T )  = Re { J g ( R )  I exp {ir9,} 9 exp [in$ + iaZ - iwT]}. (3.4.2) 

The distribution of disturbance vorticity will also be determined; the components 
are, in our notation, 

(3.4.3) 
YR = i/R[nF(R) - R*(R)], YC = - [F'(R) + a9(R)] ,  

yz = X ( R )  + R + n/R 9(~)] , [ 
where primes denote differentiation with respect to R. 

4* Eigenvalue 4.1. Individual j e t  profiles 

Adopting the quasi-uniform assumption, the individual dispersion relationships 
are computed throughout the first five diameters of the jet flow for each type of 
disturbance. A typical result is shown in figure 4 for the jet station z/d, = 0,125. 
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FIGURE 4. Eigenvalue results at z& = 0.125. 
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0.125 4.80 0 0.290 0.41 1 
1 0.250 0.600 
2 0.210 0.580 

2.00 2.80 0 0.255 0.535 
1 0.211 0.550 
2 0.160 0.564 

4.00 1.20 0 0.115 0.590 
1 0.161 0.567 
2 0.063 0.41 1 

ZIdO A 0, 

0.300 
0.350 
0.340 

0.374 
0.350 
0.330 

0.450 
0.354 
0.224 

CP 

0.730 
0.583 
0.586 

0.699 
0.636 
0.585 

0.763 
0.624 
0.545 

TABLE 1. Eigenvalue results for the most unatable axisymmetric, helical, 
and double helical disturbances in an axisymmetric jet 

Here, as a t  all other stations examined, all three types of disturbance are unstable, 
and all three are dispersive with varying amplification rates. Of these, the most 
unstable is seen to be the axisymmetric disturbance having characteristics 
a, = 0.411, w, = 0-300, as a result of its maximum spatial amplification rate, 
- ai = 0.290. The phase velocities for these disturbances, although not presented 
explicitly, can be found via cp = w,,laT. It is noted that the phase velocity for the 
longest axisymmetric disturbances exceeds unity owing to the structure of the 
shear layer at  the edge of the jet. With downstream distance and thicker shear 
layer, the phase velocity for all disturbances is less than one. 

For the sake of brevity, the most unstable disturbance characteristics calcu- 
lated in the near jet flow are presented in table 1. In the table, it is noted that a t  
jet stations z/d, = 0.125 and 2.0, an n = 0 axisymmetric disturbance is the most 
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unstable of the three types tested. However, a t  the station zld, = 4.0, it is found 
that an n = 1 helical disturbance has become the most highly amplified of the 
three types. Actually, the change-over in the hierarchy of unstable waves occurs 
a t  zld, = 3.0, as a result of the streamwise variations in the spatial amplification 
rates of the n = 0 and n = 1 disturbances. The axisymmetric amplification rate 
decreases more rapidly with stream distance than that of the helical disturbance. 
As this shear layer thickens to the point where the half-breadth thickness of the 
shear layer is 55 % of the potential core radius, the helical n = 1 disturbance 
becomes the dominant disturbance in the jet flow. 

At no jet station was the n = 2 double helical disturbance found to receive 
maximum amplification. Its maximum amplification rate is seen from the table 
to occur at the most upstream station; and from this maximum there is observed 
to be a rather rapid decrease throughout the near jet flow field. 

4.2. Eigenfunction computations 

Having the characteristics ofthe most highly amplified disturbances a t  successive 
jet stations, we now examine the cross-stream distributions of the corresponding 
eigenfunctions. These distributions will exclude the travelling wave portion ofthe 
disturbance and the spatial amplification factor; the distributions will include 
the exponential factor exp {in$}, representing azimuthal phase variations. The 
three components of velocity and vorticity will be presented for the axisymmetric 
disturbance mode a t  the most upstream jet station only. The components for the 
helical mode are presented only for the station xld, = 4.0. 

In  the plots presented below, the ordinates are scaled with respect to the 
conditions imposed upon the ordinate or slope of the function Y(R) at the jet 
centre-line. As such, each of the eigenfunction distributions has to be appro- 
priately scaled according to the ratio of the corresponding experimental values. 

For the n = 0 axisymmetric disturbance mode, the disturbance velocity and 
vorticity components at jet station zld, = 0-125 are shown in figure 5 .  The 
azimuthal component of the disturbance velocity, together with radial and 
streamwise components of disturbance vorticity, are zero across the diameter of 
the jet. Prom the graph of the streamwise component of disturbance velocity, 
there exists a phase shift near the edge of the jet. It is also noted that both the 
streamwise and radial components of disturbance velocity have a small peak 
just inside the absolute maximum in the distribution. These small peaks are the 
result of the sharp change in the curvature in the mean profile a t  the outer edge of 
the potential core [see (2.2.1)]. This is also noted in the azimuthal component of 
disturbance vorticity, which exhibits large, initially negative peaks at these 
locations. Of course, with time, these distributions will oscillate with angular 
frequency; and with downstream disturbance they will have a wavelength in 
accordance with the travelling wave portion of the disturbance that is omitted 
from these graphs. 

Downstream a t  zld, = 4.0, where the helical mode is the most amplified, the 
cross-stream distributions of disturbance velocity and vorticity are presented 
in figure 6. Here, the non-dimensional radial co-ordinate is shown reduced, 
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FIGURE 5. Eigenfunction distributions for n = 0 at z/d, = 0.125. 
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FIGURES 6(a ,  b ) .  For legend see page 554. 

compared with figure 5 ,  by virtueof the choice of characteristic length. Examining 
the radial and streamwise components of disturbance velocity, they are found to 
have amplitudes that are qualitatively quite similar to the corresponding 
distributions for the axisymmetric mode at station zld, = 0.125. However, 
through the exponential factor containing the azimuthal angle, there exists a 
phase shift of 7~ radians a t  the centre-line for all the helical eigenfunctions. 
Comparing qualitatively the radial components of disturbance velocity in the 
axisymmetric mode with the helical, it is noted that again small peaks occur in 
pn or i3 a t  the radial positions where the mean profile has large negative curva- 
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FIGURES 6 ( c ,  d).  For legend see page 554. 

ture. The streamwise distributions for the two modes indicate that the minor 
peaks disappear completely at the downstream station. At x/do = 4.0, in the 
azimuthal component of disturbance velocity, it is found that there exists only 
a single peak on each side of the centre-line, with a single T radian shift on the 
centre-line. The azimuthal component of disturbance vorticity for the helical 
mode is also found to be qualitatively similar to that for the symmetrical mode, 
excluding the phase shift at the centre-line. For the helical mode, there is found 
a quantitative reduction in these peaks which are located at the radial position 
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FIGURE 6. Eigenfunction distributions for n = 1 at z/d, = 4.0. 

of the maximum shear layer in the mean velocity profile. However, it is recalled 
that the exponential amplification factor has been excluded from these results. 
This factor comprises a gain of about 890 over the first four diameters of jet flow, 
which more than compensates for the apparent decrease between figures 5 ( c )  and 
6 (f ), and indicates the nature of the spatial amplification. 

5. Measurement of disturbance characteristics 
Measurements of disturbance characteristics (viz. wavelength, frequency, and 

the cross-stream r.m.s. distributions of the streamwise component of the distur- 
bance velocity) were made using anemometry. In addition, surveys were con- 
ducted to determine the azimuthal and radial phase relationships of &. Values of 
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FIGURE 7 .  Comparison of experimental values ( 0 )  of disturbance wavenumber, amplifica- 
tion rate and angular frequency with the results of the spatial theory (A). 

the spatial growth rate - ai were calculated from the r.m.s. distributions, using 

- the finite difference ratio 
-aI = Alog,[( P%).~/UQ] (AZ)-l, 

where the bar indicates the time average. 
In  figure 7, experimentally determined values for disturbance wavenumbers 

are presented for the most highly amplified disturbances, according to the 
previously described theory. The experimental values were determined by 
traversingone sensor longitudinally relative to another one, until a phase shift was 
visually observed on a dual-trace oscilloscope. Actually, by inverting one signal, 
one only needs to traverse half a wavelength in the stream direction to obtain 
the required shift. The resulting streamwise separation of the sensors is then 
recorded as half the wavelength for the station halfway between the two sensors. 
As indicated in table 1, over the first few diameters of the jet flow, the most highly 
amplified wavenumber, according to the theory, increases with downstream 
distance. Thus the disturbance wavelength decreases over this streamwise 
distance. The scatter found in the experimental results presented in figure 7 is 
attributed, for the most part, to natural variations or drift of the disturbance 
characteristics. This drifting is especially acute in the very near jet region, where 
disturbance amplitudes are very small. 
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Figure 7 also presents the values for spatial growth rate as calculated from the 
cross-stream r.m.s. distributions of %. The quantitative agreement of the theo- 
retical and experimental results is considered good. Cross-stream distributions of 
& are presented in figure 8 for several jet stations, where the solid lines are the 
theoretical eigenfunctions scaled for the purposes of qualitative comparison to 
match the experimental results at the maximum value. Of course, quantitatively, 
a multiplicative constant for the eigenfunctionsis omitted from the above theory; 
hence the eigenfunction distributions are simply scalar multiples of the results 
shown in figure 8. The qualitative nature of these cross-stream distributions does 
not conclusively indicate which type of disturbance is amplifying naturally in the 
near jet field. This is described below in the measurements of disturbance phase. 

Using a single channel of anemomet'ry, a survey of disturbance angular 
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FIGURE 9. Diametral distribution of the streamwise component 
of disturbance velocity at z/E,  = 1.0. 

frequency in the near jet region produced the experimental values shown in 
figure 7, where the theoretical values of the most highly amplified disturbances 
are also presented. The theoretical values, as listed in table 1, indicate that 
angular frequency increases slightly with downstream distance over the first two 
diameters of the jet flow. This trend is in agreement with the experimental values, 
which show improved agreement with downstream distance. It is noted that with 
the exception of the wavenumber value a t  z/d, = 0.3, all of the experimentally 
determined disturbance characteristics fall below the corresponding theoretical 
values. This is as expected, for the theory is an inviscid one while the experiment 
is conducted a t  finite Reynolds number. 

With an additional channel of anemometry, an investigation of the disturbance 
phase was conducted one diameter from the jet source. I n  figure 9 are presented 
tracings of oscillographic records which exhibit typical anemometer signals from 
probes placed along a diameter of the jet flow. From these and other similar 
records it is concluded that there does exist a phase shift of 7~ radians in the shear- 
layer region of the jet flow. Further, from the two upper tracings there exists 
phase agreement in the outer region of the jet as well as in the central portion, 
just beyond the potential core. Figure 10 presents similar oscillographic tracings 
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FIGURE 10. Azimuthal distribution of the streamwise component 
of disturbance velocity a t  z/d, = 1.0. 

recorded from sensors placed entirely within the radial location of the phase shift 
established through the results in figure 9. It is seen from these results that the 
disturbance phase in the shear layer beyond the potential core radius, and within 
the location of the phase shift, exhibits complete agreement. This confirms the 
existence of an axisymmetric disturbance in the near jet field. An additional 
observation that can be made from figures 9 and 10 is the intermittency or natural 
drift in both frequency, amplitude, and sometimes in phase that is visible in these 
oscillographic records. 

An attempt was made to determine the disturbance phase distribution a t  jet 
station zld, = 4.0. However, no firm conclusions can be drawn from these results. 
Suffice it to report that approximately half the records indicate that the axisym- 
metric mode prevails and the other half point to the helical mode. Although there 
does exist the above-mentioned natural drift, there was observed no trend toward 
a double helical disturbance. Perhaps this apparent confusion as to the natural 
selection ofa dominant mode is the result of the quantitatively similar amplifica- 
tion rates of the axisymmetric and helical modes at  this location in the jet (see 
figures 4, 7;  table 1) .  
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6. Discussion and conclusion 
The theoretical results of the present work are considered to be in good agree- 

ment with the corresponding experimental observations. One of the most im- 
portant conclusions to be drawn from our effort is that the detailed structure of 
the mean velocity profile is quite critical to the results of the spatial stability 
analysis. Therefore, it  is concluded that the large values for phase velocity pre- 
dicted by Crow & Champagne are the result of their choice of a ‘ top-hat ’ profile, 
with its infinitely thin shear-layer region at  the edge of the jet. Furthermore, in the 
present effort several interesting results are obtained by incorporating into the 
theory (through the quasi-uniform assumption) the streamwise variations in the 
jet’s potential core and shear-layer thickness. 

It is found that initially in the jet there exists an axisymmetric disturbance 
which dominates the other two modes considered, namely the helical and double 
helical modes. With downstream distance, this dominant disturbance exhibits 
a slightly increasing wavenumber and angular frequency. It is amplified with a 
spatial rate that is found to diminish slightly in the stream direction. Each of 
these trends agrees quantitatively and qualitatively with the experimental 
results. 

Further, with downstream distance a t  the three-diameter station, it is found 
that according to the linear spatial stability theory, the helical mode of instability 
becomes the most highly amplified. This is due to the different streamwise varia- 
tions of the spatial growth rates of these two disturbances. Throughout the 
following two diameters of the jet flow, the helical mode remains the most 
dominant. This switch in the hierarchy of unstable disturbances could not be 
conclusively documented experimentally, owing to either the usual natural drift 
or the intermittency in the alternation from one mode to the other. The axisym- 
metric and helical modes of disturbance are found to have quantitatively very 
similar disturbance characteristics, such as wavenumber, frequency and spatial 
amplification rates in this portion of the jet flow. The other mode of disturbance 
considered in the present study, the double helical mode, was found to be 
unstable through the jet region examined, but at  no jet location was it found to 
dominate. 

Because of the change of the most unstable disturbance mode in the axisym- 
metric jet, and because, initially, the unstable disturbances of interest in the jet 
are infinitesimal, the use of artificial excitation of a single ‘naturally amplifying ’ 
mode is considered less than desirable. Such excitation has been resorted to in the 
past, to lock the drifting disturbance characteristics onto their natural values. 
In  the present results, although this drift is apparent, it is felt that to employ 
patiently lengthy averaging times is the more appropriate of the two responses. 

To interpret properly this switch in the hierarchy of unstable modes, one has 
to make the assumption that the linear theory applies throughout the first three 
diameters of jet flow. Then, through the principle of superposition, the previously 
dominant and exponentially amplifying axisymmetric disturbances are domi- 
nated by a previously less dominant helical mode. In all the preceding jet flow 
it is inherently assumed that, although exponentially amplifying, no disturbance 
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has grown sufficiently either to interact with any other or to nullify the linear 
assumption. As such, no mechanisms or details of the mode switch are given. 

However, i t  seems appropriate to conclude that, with downstream distance, 
the developments that occur both in the present axisymmetric jet, and quite 
probably in other unstable flows, result from phenomena that initiate in regions 
where disturbances are small. As such, it is appropriate to  understand all the 
characteristics of the unstable disturbances throughout the linear region before 
attempting the nonlinear theory or the numerical computation of these exceed- 
ingly complex flows. 

The authors gratefully acknowledge the support of the National Science 
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FIGURE 1. Jet flow visualized with hydrogen-bubble technique. Flow is from left to right 
with kinlred bubble-gonerating wire just downstream of jet source. 
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